3.1.69 \(\int x^2 (d-c^2 d x^2)^{3/2} (a+b \arcsin (c x)) \, dx\) [69]

3.1.69.1 Optimal result
3.1.69.2 Mathematica [A] (verified)
3.1.69.3 Rubi [A] (verified)
3.1.69.4 Maple [C] (verified)
3.1.69.5 Fricas [F]
3.1.69.6 Sympy [F]
3.1.69.7 Maxima [F]
3.1.69.8 Giac [F]
3.1.69.9 Mupad [F(-1)]

3.1.69.1 Optimal result

Integrand size = 27, antiderivative size = 265 \[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\frac {b d x^2 \sqrt {d-c^2 d x^2}}{32 c \sqrt {1-c^2 x^2}}-\frac {7 b c d x^4 \sqrt {d-c^2 d x^2}}{96 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^6 \sqrt {d-c^2 d x^2}}{36 \sqrt {1-c^2 x^2}}-\frac {d x \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))}{16 c^2}+\frac {1}{8} d x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))+\frac {d \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))^2}{32 b c^3 \sqrt {1-c^2 x^2}} \]

output
1/6*x^3*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x))-1/16*d*x*(a+b*arcsin(c*x))* 
(-c^2*d*x^2+d)^(1/2)/c^2+1/8*d*x^3*(a+b*arcsin(c*x))*(-c^2*d*x^2+d)^(1/2)+ 
1/32*b*d*x^2*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-7/96*b*c*d*x^4*(-c^ 
2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/36*b*c^3*d*x^6*(-c^2*d*x^2+d)^(1/2)/ 
(-c^2*x^2+1)^(1/2)+1/32*d*(a+b*arcsin(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c^3/( 
-c^2*x^2+1)^(1/2)
 
3.1.69.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.64 \[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\frac {d \sqrt {d-c^2 d x^2} \left (9 a^2+b^2 c^2 x^2 \left (9-21 c^2 x^2+8 c^4 x^4\right )-6 a b c x \sqrt {1-c^2 x^2} \left (3-14 c^2 x^2+8 c^4 x^4\right )+6 b \left (3 a+b c x \sqrt {1-c^2 x^2} \left (-3+14 c^2 x^2-8 c^4 x^4\right )\right ) \arcsin (c x)+9 b^2 \arcsin (c x)^2\right )}{288 b c^3 \sqrt {1-c^2 x^2}} \]

input
Integrate[x^2*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]
 
output
(d*Sqrt[d - c^2*d*x^2]*(9*a^2 + b^2*c^2*x^2*(9 - 21*c^2*x^2 + 8*c^4*x^4) - 
 6*a*b*c*x*Sqrt[1 - c^2*x^2]*(3 - 14*c^2*x^2 + 8*c^4*x^4) + 6*b*(3*a + b*c 
*x*Sqrt[1 - c^2*x^2]*(-3 + 14*c^2*x^2 - 8*c^4*x^4))*ArcSin[c*x] + 9*b^2*Ar 
cSin[c*x]^2))/(288*b*c^3*Sqrt[1 - c^2*x^2])
 
3.1.69.3 Rubi [A] (verified)

Time = 0.82 (sec) , antiderivative size = 254, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.296, Rules used = {5202, 244, 2009, 5198, 15, 5210, 15, 5152}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx\)

\(\Big \downarrow \) 5202

\(\displaystyle \frac {1}{2} d \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))dx-\frac {b c d \sqrt {d-c^2 d x^2} \int x^3 \left (1-c^2 x^2\right )dx}{6 \sqrt {1-c^2 x^2}}+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))\)

\(\Big \downarrow \) 244

\(\displaystyle \frac {1}{2} d \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))dx-\frac {b c d \sqrt {d-c^2 d x^2} \int \left (x^3-c^2 x^5\right )dx}{6 \sqrt {1-c^2 x^2}}+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {1}{2} d \int x^2 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))dx+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5198

\(\displaystyle \frac {1}{2} d \left (\frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{4 \sqrt {1-c^2 x^2}}-\frac {b c \sqrt {d-c^2 d x^2} \int x^3dx}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {1}{2} d \left (\frac {\sqrt {d-c^2 d x^2} \int \frac {x^2 (a+b \arcsin (c x))}{\sqrt {1-c^2 x^2}}dx}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5210

\(\displaystyle \frac {1}{2} d \left (\frac {\sqrt {d-c^2 d x^2} \left (\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}+\frac {b \int xdx}{2 c}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}\right )}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 15

\(\displaystyle \frac {1}{2} d \left (\frac {\sqrt {d-c^2 d x^2} \left (\frac {\int \frac {a+b \arcsin (c x)}{\sqrt {1-c^2 x^2}}dx}{2 c^2}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}+\frac {b x^2}{4 c}\right )}{4 \sqrt {1-c^2 x^2}}+\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\right )+\frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

\(\Big \downarrow \) 5152

\(\displaystyle \frac {1}{6} x^3 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x))+\frac {1}{2} d \left (\frac {1}{4} x^3 \sqrt {d-c^2 d x^2} (a+b \arcsin (c x))+\frac {\sqrt {d-c^2 d x^2} \left (\frac {(a+b \arcsin (c x))^2}{4 b c^3}-\frac {x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{2 c^2}+\frac {b x^2}{4 c}\right )}{4 \sqrt {1-c^2 x^2}}-\frac {b c x^4 \sqrt {d-c^2 d x^2}}{16 \sqrt {1-c^2 x^2}}\right )-\frac {b c d \left (\frac {x^4}{4}-\frac {c^2 x^6}{6}\right ) \sqrt {d-c^2 d x^2}}{6 \sqrt {1-c^2 x^2}}\)

input
Int[x^2*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]
 
output
-1/6*(b*c*d*Sqrt[d - c^2*d*x^2]*(x^4/4 - (c^2*x^6)/6))/Sqrt[1 - c^2*x^2] + 
 (x^3*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]))/6 + (d*(-1/16*(b*c*x^4*Sq 
rt[d - c^2*d*x^2])/Sqrt[1 - c^2*x^2] + (x^3*Sqrt[d - c^2*d*x^2]*(a + b*Arc 
Sin[c*x]))/4 + (Sqrt[d - c^2*d*x^2]*((b*x^2)/(4*c) - (x*Sqrt[1 - c^2*x^2]* 
(a + b*ArcSin[c*x]))/(2*c^2) + (a + b*ArcSin[c*x])^2/(4*b*c^3)))/(4*Sqrt[1 
 - c^2*x^2])))/2
 

3.1.69.3.1 Defintions of rubi rules used

rule 15
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[ 
{a, m}, x] && NeQ[m, -1]
 

rule 244
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand 
Integrand[(c*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p 
, 0]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5152
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_S 
ymbol] :> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a 
 + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d 
+ e, 0] && NeQ[n, -1]
 

rule 5198
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + 
(e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcS 
in[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/Sqrt[1 
 - c^2*x^2]]   Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x 
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]]   Int[ 
(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, 
 f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
 

rule 5202
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcS 
in[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1))   Int[(f*x) 
^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 
2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f*x)^(m + 1)*(1 - c^2 
*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, 
e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] &&  !LtQ[m, -1]
 

rule 5210
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_. 
)*(x_)^2)^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + 
 b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p 
 + 1)))   Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + S 
imp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p]   Int[(f* 
x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; 
FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m 
, 1] && NeQ[m + 2*p + 1, 0]
 
3.1.69.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.15 (sec) , antiderivative size = 682, normalized size of antiderivative = 2.57

method result size
default \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{6 c^{2} d}+\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{24 c^{2}}+\frac {a d x \sqrt {-c^{2} d \,x^{2}+d}}{16 c^{2}}+\frac {a \,d^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{16 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} d}{32 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-32 i \sqrt {-c^{2} x^{2}+1}\, c^{6} x^{6}+32 c^{7} x^{7}+48 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}-64 c^{5} x^{5}-18 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+38 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-6 c x \right ) \left (i+6 \arcsin \left (c x \right )\right ) d}{2304 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-i+2 \arcsin \left (c x \right )\right ) d}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (11 i+24 \arcsin \left (c x \right )\right ) \cos \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) \left (7 i+48 \arcsin \left (c x \right )\right ) \sin \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (8 \arcsin \left (c x \right )+i\right ) \cos \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \sin \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(682\)
parts \(-\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{6 c^{2} d}+\frac {a x \left (-c^{2} d \,x^{2}+d \right )^{\frac {3}{2}}}{24 c^{2}}+\frac {a d x \sqrt {-c^{2} d \,x^{2}+d}}{16 c^{2}}+\frac {a \,d^{2} \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{16 c^{2} \sqrt {c^{2} d}}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} d}{32 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (-32 i \sqrt {-c^{2} x^{2}+1}\, c^{6} x^{6}+32 c^{7} x^{7}+48 i \sqrt {-c^{2} x^{2}+1}\, x^{4} c^{4}-64 c^{5} x^{5}-18 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+38 c^{3} x^{3}+i \sqrt {-c^{2} x^{2}+1}-6 c x \right ) \left (i+6 \arcsin \left (c x \right )\right ) d}{2304 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (2 i \sqrt {-c^{2} x^{2}+1}\, x^{2} c^{2}+2 c^{3} x^{3}-i \sqrt {-c^{2} x^{2}+1}-2 c x \right ) \left (-i+2 \arcsin \left (c x \right )\right ) d}{256 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (11 i+24 \arcsin \left (c x \right )\right ) \cos \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) \left (7 i+48 \arcsin \left (c x \right )\right ) \sin \left (5 \arcsin \left (c x \right )\right ) d}{4608 c^{3} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (8 \arcsin \left (c x \right )+i\right ) \cos \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}+\frac {3 \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \sin \left (3 \arcsin \left (c x \right )\right ) d}{512 c^{3} \left (c^{2} x^{2}-1\right )}\right )\) \(682\)

input
int(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x,method=_RETURNVERBOSE)
 
output
-1/6*a*x*(-c^2*d*x^2+d)^(5/2)/c^2/d+1/24*a/c^2*x*(-c^2*d*x^2+d)^(3/2)+1/16 
*a/c^2*d*x*(-c^2*d*x^2+d)^(1/2)+1/16*a/c^2*d^2/(c^2*d)^(1/2)*arctan((c^2*d 
)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))+b*(-1/32*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+ 
1)^(1/2)/c^3/(c^2*x^2-1)*arcsin(c*x)^2*d-1/2304*(-d*(c^2*x^2-1))^(1/2)*(-3 
2*I*(-c^2*x^2+1)^(1/2)*c^6*x^6+32*c^7*x^7+48*I*(-c^2*x^2+1)^(1/2)*x^4*c^4- 
64*c^5*x^5-18*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+38*c^3*x^3+I*(-c^2*x^2+1)^(1/2) 
-6*c*x)*(I+6*arcsin(c*x))*d/c^3/(c^2*x^2-1)+1/256*(-d*(c^2*x^2-1))^(1/2)*( 
2*I*(-c^2*x^2+1)^(1/2)*x^2*c^2+2*c^3*x^3-I*(-c^2*x^2+1)^(1/2)-2*c*x)*(-I+2 
*arcsin(c*x))*d/c^3/(c^2*x^2-1)+1/4608*(-d*(c^2*x^2-1))^(1/2)*(I*c^2*x^2-c 
*x*(-c^2*x^2+1)^(1/2)-I)*(11*I+24*arcsin(c*x))*cos(5*arcsin(c*x))*d/c^3/(c 
^2*x^2-1)-1/4608*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2- 
1)*(7*I+48*arcsin(c*x))*sin(5*arcsin(c*x))*d/c^3/(c^2*x^2-1)-1/512*(-d*(c^ 
2*x^2-1))^(1/2)*(I*c^2*x^2-c*x*(-c^2*x^2+1)^(1/2)-I)*(8*arcsin(c*x)+I)*cos 
(3*arcsin(c*x))*d/c^3/(c^2*x^2-1)+3/512*(-d*(c^2*x^2-1))^(1/2)*(I*c^2*x^2- 
c*x*(-c^2*x^2+1)^(1/2)-I)*sin(3*arcsin(c*x))*d/c^3/(c^2*x^2-1))
 
3.1.69.5 Fricas [F]

\[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\int { {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="fricas" 
)
 
output
integral(-(a*c^2*d*x^4 - a*d*x^2 + (b*c^2*d*x^4 - b*d*x^2)*arcsin(c*x))*sq 
rt(-c^2*d*x^2 + d), x)
 
3.1.69.6 Sympy [F]

\[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\int x^{2} \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \]

input
integrate(x**2*(-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x)),x)
 
output
Integral(x**2*(-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x)), x)
 
3.1.69.7 Maxima [F]

\[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\int { {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="maxima" 
)
 
output
b*sqrt(d)*integrate(-(c^2*d*x^4 - d*x^2)*sqrt(c*x + 1)*sqrt(-c*x + 1)*arct 
an2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x) + 1/48*a*(2*(-c^2*d*x^2 + d)^(3 
/2)*x/c^2 - 8*(-c^2*d*x^2 + d)^(5/2)*x/(c^2*d) + 3*sqrt(-c^2*d*x^2 + d)*d* 
x/c^2 + 3*d^(3/2)*arcsin(c*x)/c^3)
 
3.1.69.8 Giac [F]

\[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\int { {\left (-c^{2} d x^{2} + d\right )}^{\frac {3}{2}} {\left (b \arcsin \left (c x\right ) + a\right )} x^{2} \,d x } \]

input
integrate(x^2*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="giac")
 
output
integrate((-c^2*d*x^2 + d)^(3/2)*(b*arcsin(c*x) + a)*x^2, x)
 
3.1.69.9 Mupad [F(-1)]

Timed out. \[ \int x^2 \left (d-c^2 d x^2\right )^{3/2} (a+b \arcsin (c x)) \, dx=\int x^2\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2} \,d x \]

input
int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2),x)
 
output
int(x^2*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2), x)